Inf-sup lower bound

Lower bound for coercivity constant

We require a lower bound αLB(μ) for α(μ)=αc(μ), μDμ

Two strategies are available:

  • « Min Θ » approach if a is parametrically coercive (i.e. the coercivity constant depends solely on μ)

  • and more generally the Successive Constraint Method (SCM) which can also be applied in case of « Inf-Sup » stable problems (Stokes, Helmholtz,…​)

1. « Min Θ » Approach

1.1. Lower bound for α(μ)

Lemma

For a parametrically coercive bilinear form

  • Θq(μ)>0, μDμ and

  • aq(v,v)0, vX, 1qQ

We have

Θmin,ˉμa(μ)=α(ˉμ)minq=1...QΘqa(μ)Θqa(ˉμ)α(μ)

where ˉμDμ which was used to define the X-inner product and induced norm

Recall that

(u,v)X=a(u,v;ˉμ),u,vXvX=(u,v)X,vX

1.2. Upper bound for γ(μ)

Similarly we develop an upper bound γUB(μ) for γ(μ). We define

>Θmax,ˉμa(μ)=γ(ˉμ)maxq=1...QΘqq(μ)Θqa(ˉμ)γ(μ)

Remark : γUB(μ) is actually not required in practice but relevant in the theory.

1.3. Summary

If a is parametrically coercive we then choose

  • the coercivity constant lower bound to be αLB(μ)Θmin,ˉμa(μ)

  • and the continuity constant upper bound to be (a symmetric) γUB(μ)Θmax,ˉμa(μ)

Remark on cost :

  • Online cost to evaluate αLB(μ) : O(Qa)

  • Choice of inner product important (u,v)X=a(u,v;ˉμ) (see multiple inner products approach)

  • Extends to non-symmetric problems by considering the symmetric part as(u,v;μ)=12(a(u,v;μ)+a(v,u;μ))

2. Successive constraint method (SCM)

2.1. Stability estimates

We wish to compute αLB:DR such that

0<αLB(μ)αN(μ),μD

and it computation is rapid O(1) where αN(μ)=infwXNa(w,w;μ)w2X

Computation of αN(μ) : αN(μ) is the minimum eigenvalue of the following generalized eigenvalue problem

a(w,v;μ)=λ(μ) m(w,v;μ),(Aw=λBw)

where m(,) is the bi-linear form associated with X and B is the associated matrix.

2.2. Successive Constraint method : Reformulation

The problem as a minimization one First recall a(w,v;μ)=Qaq=1θq(μ) aq(w,v). Hence we have αN(μ)=infwXNQaq=1θq(μ)aq(w,w)w2X and we note Jobj(w;μ)=Qaq=1θq(μ)aq(w,w)w2X

Reformulation : We have the following optimisation problem αN(μ)=infyYJobj(μ;y), where Jobj(μ;y)Qaq=1θq(μ)yq and Y={yRQa| wXN s.t. yq=aq(w,w)w2XN,1qQa}

We now need to characterize Y, to do this we construct two sets YLB and YUB such that YUBYYLB over which finding αN(μ) is feasible.

Successive Constraint method : Ingredients

First we set the design space for the minimisation problem. We introduce

B=Qaq=1[infwXNaq(w,w)w2X;supwXNaq(w,w)w2X]
Ξ={μiD;i=1,...,J}

and

CK={μiΞ;i=1,...,K}Ξ

The set Ξ is constructed using a 12p division of D: in 1D, 0,1;12;14,34;.... CK will be constructed using a greedy algorithm.

Finally we shall denote PM(μ;E) the set of M points closest to μ in the set E. We shall need this type of set to construct the lower bounds.

2.3. Successive Constraint method: Lower bounds YLB

Given Mα,M+N we are now ready to define YLB

YLB(μ;CK)={yRQa|yB,Qaq=1θq(μ)yqαN(μ), μPMα(μ;CK)Qaq=1θq(μ)yqαLB(μ;CK1), μPM+(μ;ΞCK)}

Computing αLB(μ;CK) is in fact a linear program with Qa design variables, yq, and 2Qa+Mα+M+ constraints online. It requires the construction of CK offline.

Successive Constraint method: Upper bounds YUB

Let YUB(CK)={y(μk),1kK} with y(μ)=argminyY Jobj(μ;y) We set αUB(μ;CK)=infyYUB(CK) Jobj(μ;y)

YUB requires K eigensolves to compute the eigenmode ηk associated with wk,k=1,...,K and KQN inner products to compute the yq(wk)=aq(ηk,ηk;μ)ηk2XN,k=1,...,K offline . Then computing αUB(μ;CK) is a simple enumeration online.

Successive Constraint method : CK

Given Ξ and ϵ[0;1], CKmax=Greedy(Ξ,ϵ).

  • While maxμΞ αUB(μ;CK)αLB(μ;CK)αUB(μ;CK)>ϵ

    • μK+1=argmaxμΞ αUB(μ;CK)αLB(μ;CK)αUB(μ;CK)

    • CK+1=CK{μK+1}

    • KK+1

  • set Kmax=K

Successive Constraint method : Offline-Online

Offline

  • 2Qa+Mα+M+ eigensolves αN(μ),y(μk)

  • nΞKmaxLP(Q,Mα,M+) to build CKmax

  • KmaxQ inner products over XNYUB

Given μD, αLB(μ)=Online(μ,CKmax,Mα,M+).

  • sort over CKmaxPMα(μ;CKmax) and PM+(μ;ΞCKmax)

  • (Mα+M++2)Qa evaluation of θq(μ)

  • Mα lookups to get μαN(μ)

  • LP(Qa,Mα,M+) to get αLB(μ)